Biomass Characterization: Recent Progress in Understanding Biomass Recalcitrance
نویسندگان
چکیده
The ever-increasing global demand for energy and materials has a pronounced effect on worldwide economic stability, diplomacy, and technical advancement. In response, a recent key research area in biotechnology has centered on the biological conversion of lignocellulosic biomass to simple sugars. Lignocellulosic biomass, converted to fermentable sugars via enzymatic hydrolysis of cell wall polysaccharides, can be utilized to generate a variety of downstream fuels and chemicals. Ethanol, in particular, has a high potential as transportation fuel to supplement or even replace gasoline derived from petroleum feedstocks. Biological or enzymatic hydrolysis offers the potential for low-cost, highyield, and selective production of targeted chemicals and value-added coproducts at milder operating conditions than thermochemical processes such as gasification or pyrolysis. Due to the complex nature of biomass, degrading enzymes, and their interactions, there is a substantial knowledge gap with respect to the mechanism of enzymatic hydrolysis and the relationship between biomass structure and enzymatic performance. This knowledge gap has greatly contributed to the fact that biological conversion of lignocellulosic biomass has not met the target performance and cost requirements for large-scale production and market entrance. This review highlights recent advances in analytical methods to characterize the chemical and molecular features related to the ability of biomass to resist biological deconstruction, defined as biomass recalcitrance. We also briefly discuss the application of some of these methods in a variety of studies that draw attention to relationships between biomass structure, the effectiveness of enzymatic hydrolysis and biomass recalcitrance.
منابع مشابه
Progress in understanding and overcoming biomass recalcitrance: a BioEnergy Science Center (BESC) perspective
The DOE BioEnergy Science Center has operated as a virtual center with multiple partners for a decade targeting overcoming biomass recalcitrance. BESC has redefined biomass recalcitrance from an observable phenotype to a better understood and manipulatable fundamental and operational property. These manipulations are the result of deeper biological understanding and can be combined with other a...
متن کاملCurrent Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance
Lignin, a complex aromatic polymer in terrestrial plants, contributes significantly to biomass recalcitrance to microbial and/or enzymatic deconstruction. To reduce biomass recalcitrance, substantial endeavors have been exerted on pretreatment and lignin engineering in the past few decades. Lignin removal and/or alteration of lignin structure have been shown to result in reduced biomass recalci...
متن کاملAssessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
The production of cellulosic ethanol from biomass is considered a promising alternative to reliance on diminishing supplies of fossil fuels, providing a sustainable option for fuels production in an environmentally compatible manner. The conversion of lignocellulosic biomass to biofuels through a biological route usually suffers from the intrinsic recalcitrance of biomass owing to the complicat...
متن کاملHigh-throughput Pretreatment and Hydrolysis Systems for Screening Biomass Species in Aqueous Pretreatment of Plant Biomass
The primary barrier to low-cost biological conversion of lignocellulosic biomass to renewable fuels and chemicals is plant recalcitrance, that is to say, resistance of cell walls to deconstruction by enzymes or microbes [1,2]. However, the discovery and use of biomass species with reduced recalcitrance, when combined with optimized pretreatment processes and enzyme mixtures, could potentially i...
متن کاملTowards a deeper understanding of structural biomass recalcitrance using phase-contrast tomography
BACKGROUND The development of technological routes to convert lignocellulosic biomass to liquid fuels requires an in-depth understanding of the cell wall architecture of substrates. Essential pretreatment processes are conducted to reduce biomass recalcitrance and usually increase the reactive surface area. Quantitative three-dimensional information about both bulk and surface structural featur...
متن کامل